Forces
Types of forces

- Air Resistance Force
- Applied Force
- Spring Force
- Frictional Force
- Gravitational Force
- Electrical Force
- Normal Force
- Magnetic Force
Air resistance force

What is air resistance?
Basically, it is friction between an object and the air.

What causes air resistance?
All matter is made from atoms and/or molecules. The air is no exception. When something moves through the air, it bumps into the atoms and molecules.
Applied force

What is applied?

Applied force is when a living creature puts pressure on an object.
Spring force

What is spring force?
Is when an object is pushed together, then when pressures taken away it pops back to its normal self.
Frictional force

What is frictional force?
Frictional forces is present everywhere in our daily life. It is simply impossible to reduce it completely.

What causes frictional force?
The causes of the resistive force of friction are molecular adhesion, surface roughness, and the plowing effect. Adhesion is the molecular force resulting when two materials are brought into close contact with each other.
Gravitational force

Newton's fiery of gravitational forces:
“Every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between them.”
Electrical force

What is electrical force?

The attractive or repulsive interaction between any two charged objects is an electric force. Like any force, its affect upon objects.
Normal force

What is normal force?
Normal force is the support force exerted upon an object which is in contact with another stable object. For example, if a book is resting upon a surface, then the surface is exerting an upward force upon the book in order to support the weight of the book.
Magnetic force

What is magnetic force?

Magnetic force is the same as gravitational and electrical forces in that no one knows truly what it is. Magnetic force is different from gravitational and electrical forces in that its potential and momentic energy is at the expense of an electrical field in time.
I used the following websites for help:

- http://www.glenbrook.k12.il.us/gbssci/Phys/Class/newtlaws/u2l2b.html
Thanks for watching